
EffiCuts: Optimizing Packet Classification for Memory

and Throughput
Balajee Vamanan*, Gwendolyn Voskuilen* and T. N. Vijaykumar (* both primary student authors)

School of Electrical and Computer Engineering, Purdue University

{bvamanan, geinfeld, vijay}@ecn.purdue.edu
ABSTRACT
Packet Classification is a key functionality provided by modern

routers. Previous decision-tree algorithms, HiCuts and HyperCuts,

cut the multi-dimensional rule space to separate a classifier’s rules.

Despite their optimizations, the algorithms incur considerable

memory overhead due to two issues: (1) Many rules in a classifier

overlap and the overlapping rules vary vastly in size, causing the

algorithms’ fine cuts for separating the small rules to replicate the

large rules. (2) Because a classifier’s rule-space density varies sig-

nificantly, the algorithms’ equi-sized cuts for separating the dense

parts needlessly partition the sparse parts, resulting in many inef-

fectual nodes that hold only a few rules. We propose EffiCuts

which employs four novel ideas: (1) Separable trees: To eliminate

overlap among small and large rules, we separate all small and

large rules. We define a subset of rules to be separable if all the

rules are either small or large in each dimension. We build a dis-

tinct tree for each such subset where each dimension can be cut

coarsely to separate the large rules, or finely to separate the small

rules without incurring replication. (2) Selective tree merging: To

reduce the multiple trees’ extra accesses which degrade through-

put, we selectively merge separable trees mixing rules that may be

small or large in at most one dimension. (3) Equi-dense cuts: We

employ unequal cuts which distribute a node’s rules evenly among

the children, avoiding ineffectual nodes at the cost of a small pro-

cessing overhead in the tree traversal. (4) Node Co-location: To

achieve fewer accesses per node than HiCuts and HyperCuts, we

co-locate parts of a node and its children. Using ClassBench, we

show that for similar throughput EffiCuts needs factors of 57 less

memory than HyperCuts and of 4-8 less power than TCAM.

Categories and Subject Descriptors:
C.2.6 [Internetworking]: Routers—Packet Classification

General Terms:
Algorithms, Design, Performance

Keywords:
Packet Classification, Decision-Tree Algorithm, Rule Replication

1 INTRODUCTION
Packet classification is the problem of determining the highest-

priority rule out of a set of rules to which each network packet

matches, where each rule specifies a desired action on a set of

packets identified by a combination of the packet fields (e.g.,

source/destination IP, source/destination port, and protocol).

Packet classification continues to be an important functionality

provided by routers for various applications in QoS, security, and

network traffic monitoring and analysis. The classifiers are grow-

ing in size due to (1) the widespread deployment of virtual private

networks (VPNs) which customize rules for each VPN, (2) the

need for finer-grained differentiation demanded by QoS and other

requirements, and (3) the ever-increasing number of hosts as antic-

ipated by IPv6. Combined with the ever-increasing line rates due

to advances in fiber optics, these trends imply that routers need to

look up larger classifiers at higher throughputs (e.g., several tens of

thousands of rules every few nanoseconds).

Packet classification is an old problem with many proposed

solutions [8, 2, 5, 14, 6]. As with many of the functionalities pro-

vided by modern routers (e.g., IP lookup), packet classification

schemes must scale well in throughput, power, and memory size

[4]. TCAM-based solutions [13] provide deterministic perfor-

mance, but do not scale well in throughput and power with classi-

fier size. In contrast, RAM-based algorithmic solutions have the

potential to scale well in throughput and power. However, the algo-

rithms to date incur either long searches (e.g., [14,17]) or large

memories (e.g., [6,12]), falling short of delivering on the potential.

The key contribution of this paper is reducing the memory required

by decision-tree based algorithms, specifically HiCuts [6] and its

successor, HyperCuts [12], by orders of magnitude while main-

taining high throughput. We achieve this memory reduction by vir-

tually eliminating rule replication incurred by HiCuts and

HyperCuts — from an average factor of a few hundreds to less

than 1.5.

HiCuts introduced the idea of building off-line a decision tree

by cutting the multi-dimensional rule space (e.g., IPv4’s five-tuple

space) into cubes, one dimension at a time, and successively refin-

ing the cuts to separate the rules into different subtrees, and even-

tually, distinct leaves. Each leaf holds at most as many rules as can

be searched linearly without much loss of throughput (e.g., 16

rules). Network packets traverse the tree to determine the highest-

priority matching rule. Two key metrics are the memory size and

number of memory accesses. Because routers overlap multiple

packets to hide memory latencies, packet throughput is fundamen-

tally limited by the memory bandwidth demand, and hence the

number of accesses. HyperCuts improves upon HiCuts in both the

metrics.

Despite its optimizations, HyperCuts incurs considerable mem-

ory overhead for large classifiers. We make two key observations

about this overhead: (1) Variation in rule size: Many rules in a clas-

sifier overlap and the overlapping rules vary vastly in size. The

algorithms build a single tree with overlapping small and large

rules. Consequently, fine cuts to separate the smaller rules need-

Permission to make digital or hard copies of all or part of this work for per-

sonal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior spe-

cific permission and/or a fee.

SIGCOMM 2010, August 30-September 3, 2010, New Delhi, India.

Copyright 2010 ACM 978-1-4503-0201-2/10/08...$10.00.
207

lessly replicate the larger rules that overlap with the smaller rules

without achieving much rule separation while incurring consider-

able replication and memory overhead (e.g., in 100,000-rule classi-

fiers, HyperCuts replicates rules by factors of 2,000-10,000 on

average). (2) Variation in rule-space density: A classifier’s rule-

space density varies significantly. At each tree node, the algorithms

use equi-sized cuts, which are powers of two in number, to identify

the matching child via simple indexing into an array. However, fine

cuts to separate densely-clustered rules needlessly partition the

sparse parts of the rule space, creating many ineffectual tree nodes.

To reduce the above overhead while maintaining high through-

put, we propose EffiCuts which employs four novel ideas, two for

each of the above two issues of variations in rule size and rule-

space density. To tackle the variation in the size of overlapping

rules, we eliminate overlap among small and large rules by sepa-

rating all small and large rules. We define a subset of rules to be

separable if all the rules in the subset are either small or large in

each dimension. For instance, a set of rules with wildcards only in

two specific fields is separable (assuming wildcards imply large

rules). Accordingly, we place each separable subset in a distinct

separable tree, our first idea, where each dimension can be cut

coarsely to separate the large rules, or finely to separate the small

rules without incurring replication. While Modular Classification

[17] proposes using multiple trees, our novelty is in binning the

rules into different trees based on separability whereas Modular

Classification uses some selected prefixes for this binning. We

show that separability is key to reducing rule replication.

While separable trees drastically reduce replication, each

packet has to be looked up in all the trees, requiring more memory

accesses and exerting higher bandwidth demand than in HiCuts’ or

HyperCuts’ single tree. Thus, in the trade-off between memory

size and bandwidth, HyperCuts trades size for bandwidth whereas

EffiCuts does the opposite. To reduce EffiCuts’ number of

accesses, we observe that merging two separable trees results in a

tree whose depth is usually less than the sum of the original trees’

depths. However, merging arbitrary trees may completely destroy

separability and may result in significant rule replication. There-

fore, we employ selective tree merging, our second idea, which

merges separable trees mixing rules that may be small or large in at

most one dimension. This compromise significantly reduces the

number of accesses and incurs only modest rule replication,

achieving a ‘sweet spot’ in the memory size-bandwidth trade-off.

To tackle rule-space density variation, we employ equi-dense

cuts, our third idea, which are unequal cuts that distribute a node’s

rules as evenly among the children as possible. Equi-dense cuts

employ fine cuts in the dense parts of the rule space and coarse

cuts in the sparse parts, avoiding HyperCuts’ ineffectual tree nodes

that hold only a few rules. Because equi-dense cuts are unequal,

identifying the matching child at a tree node is more involved than

simple indexing into an array, and requires comparisons of the

packet against a set of values. Thus, our equi-dense cuts trade-off

node processing complexity for rule replication and memory over-

head. We ensure an acceptable trade-off by constraining the num-

ber of children and hence comparisons needed (e.g., 8), and falling

back on HyperCuts’ equi-sized cuts (with the accompanying rule

replication) for nodes that require more comparisons.

Equi-dense cuts provide another benefit. Each HyperCuts node

requires at least two memory accesses due to a dependence

between two parts of the node (i.e., the first part determines the

second part’s address); narrow memories would incur more

accesses. We co-locate in contiguous memory locations a node’s

second part with all its children’s first parts. This node co-location,

our fourth idea, allows each node to require only one (reasonably-

wide) access, achieving better throughput. The co-location pre-

cludes HiCuts’ optimization of merging identical sibling nodes to

reduce memory, and therefore incurs some extra memory. The

redundancy is minimal for equi-dense cuts where the nodes are

forced to have only a few children which are usually distinct.

Using ClassBench [16], we show that for classifiers with 1,000

to 100,000 rules (1) EffiCuts drastically reduces the worst-case

rule replication to less than a factor of nine as compared to Hyper-

Cuts’ factor of several thousands; and (2) For similar throughput,

EffiCuts needs a factor of 57 less memory than HyperCuts and a

factor of 4-8 less power than TCAM.

The rest of the paper is organized as follows: Section 2 pro-

vides some background on HiCuts and HyperCuts. We describe

the details of EffiCuts in Section 3. We present our experimental

methodology in Section 4 and our results in Section 5. We discuss

related work in Section 6 and conclude in Section 7.

2 BACKGROUND
Because EffiCuts builds on HiCuts and its successor Hyper-

Cuts, we present some background details on these two algorithms

before describing the details of EffiCuts.

2.1 HiCuts
The HiCuts algorithm partitions the multi-dimensional rule

space (e.g., source IP, destination IP, source port, destination port,

protocol) through a decision tree with the goal of evenly separating

the rules into the tree’s leaves. Starting at the root which covers the

entire rule space, HiCuts cuts the space in a single dimension to

create a set of equi-sized subspaces which separate the rules as

evenly as possible. Each subspace is represented by a child node.

Figure 1 shows an example of a two-dimensional rule space. The

figure shows five rules and the corresponding decision tree. If a

rule spans multiple subspaces then the rule is replicated in each of

the corresponding children (e.g., R5 is replicated in Leaf 1 and

Leaf 2 in Figure 1). HiCuts repeats this process at each child node

until the number of rules at the node is below a threshold called

binth (e.g., 2 in Figure 1), keeping the node as a leaf. Each leaf

holds a set of pointers to its rules. Incoming packets traverse the

tree until they reach a leaf node. The rules at the leaf are searched

linearly to determine the highest-priority matching rule.

HiCuts adapts the partitioning process by cutting each node

independently of another, employing fine (coarse) cuts for dense

(sparse) subspaces, even if the nodes are siblings. A key implica-

tion of this adaptation is that for non-overlapping small and large

rules, HiCuts can employ appropriate fine or coarse cuts without

incurring replication. However, for overlapping small and large

rules, HiCuts is forced to separate the small rules by using fine cuts

which replicate the large rules. Rule replication artificially

increases the rule count so that each replica eventually falls in a

leaf which holds a pointer to the replicated rule. It is due to these

pointers that rule replication increases memory.

HiCuts employs four heuristics to optimize the tree. The first

two select the appropriate dimension to cut and number of cuts to

make at each node. The last two eliminate redundancy in the tree

to reduce the storage requirement. The first heuristic selects the

dimension to be cut at each node. HiCuts observes that because the
208

tree depth, and hence the number of memory accesses, is affected

by the child with the most rules, the selected dimension should

minimize the maximum number of rules per child resulting from

the cut. To this end, the heuristic selects the dimension where the

rules are most spread out (i.e., considering rules as multi-dimen-

sional cubes, the selected dimension has the most unique projec-

tions of the rules). For the second heuristic, HiCuts observes that a

larger number of cuts at a node partitions the space more finely and

reduces the tree depth, but may increase rule replication and also

the number of children, some of which may not achieve good rule

separation. That is, some children may cover fewer than binth rules

while others may cover more, so that the node storage for the

former children contributes to storage overhead. The second heu-

ristic attempts to maximize the number of cuts, and hence mini-

mize the depth, while limiting the total number of rules at all the

children of a node to be within a factor, called space_factor, of the

number of rules at the node. The third heuristic targets redundant

sibling nodes which share an identical set of rules. The heuristic

simply merges such siblings into one node. A second form of

redundancy exists when a higher-priority rule completely overlaps

a lower-priority rule within a node’s subspace. In this case, no

packet would ever match the lower-priority rule which can be

removed, as done by the fourth heuristic.

HiCuts implements each tree node as a structure containing a

header identifying the dimension that is cut at the node and the

number of cuts, and an array of pointers to the node’s children (as

many as the cuts). The tree is laid out as an array of nodes. In the

tree traversal, a packet looks up a node and uses the specified num-

ber of bits in the specified dimension to index into the node’s

child-pointer array which returns a pointer to the matching child

node. Because HiCuts employs equi-sized cuts, which are powers

of two in number, identifying the matching child amounts to sim-

ple indexing into the child-pointer array. This point is relevant in

Section 3.3 where we contrast equi-sized cuts against our equi-

dense cuts. The traversal proceeds from one node to the next termi-

nating in a leaf which returns a list of pointers to the rules. A linear

search of the rules returns the highest-priority rule matching the

packet.

To contrast later HiCuts’ node-merging heuristic against Effi-

Cuts’ equi-dense cuts, we discuss a detail about the heuristic. The

heuristic merges identical siblings into one node by simply forcing

the corresponding child pointers in the parent node to point to just

one child node. However, the pointers themselves are redundant.

Despite its optimizations, HiCuts suffers from two primary

drawbacks. First, the tree depth is dependent on the distribution of

the rules in the rule space. Classifiers that can be separated by par-

titioning a single dimension achieve shallow trees, while the others

require deep trees even if the number of cuts at each node is not

large (i.e., increasing the cuts at each node would increase rule rep-

lication without improving rule separation). This limitation arises

from the fact that HiCuts considers only one dimension to cut at a

node. Second, a large amount of redundancy still remains. HiCuts

can capture only the simplest form of full redundancy where some

of the siblings cover identical rules. However, HiCuts does not

capture partial redundancy when some siblings share many but not

all the rules. In particular, rules with wildcards are replicated

across many siblings but the presence of other rules in the siblings

prevents HiCuts from removing the redundancy. As the classifier

size scales, this redundancy grows substantially.

2.2 HyperCuts
HyperCuts [12] extends HiCuts to address the above shortcom-

ings. First, instead of cutting only one dimension at a node, Hyper-

Cuts proposes simultaneously cutting multiple dimensions to

collapse the subtree associated with the single-dimensional cuts in

HiCuts into one node in HyperCuts, thereby reducing HyperCuts’

tree depth. Second, HyperCuts partly addresses the redundancy

where siblings share some, but not all, of the rules. HyperCuts cap-

tures the cases where some of the rules are common to all the sib-

lings by moving such rules up into the parent node. Because

individual rules can be moved up, this heuristic is not limited by

HiCuts’ requirement that all the rules of a child need to be com-

mon with another sibling. After building the tree, a bottom-up tra-

versal recursively moves up rules that are common to all the

siblings into the parent. This approach reduces replication but adds

extra memory accesses at each node to search the (multiple)

moved-up rules.

In addition, HyperCuts observes that if the rules of a node do

not cover the entire space of the node then the node’s space can be

compacted to remove the empty region to avoid generating empty

child nodes (though empty nodes do not exist, the corresponding

null child pointers do exist and take up memory). Any packet that

falls outside a node’s compacted region matches the default rule

(whose action is to deny). This heuristic, called region compaction,

does incur some memory overhead to store the coordinates of the

compacted region at each node.

Although HyperCuts improves the tree depth and amount of

memory, there are still two forms of considerable redundancy.

First, because HyperCuts applies the moving up heuristic after

building the tree, the number of moved-up rules along any path is

limited to the number of rules at each leaf (i.e., binth). However,

the number of replicated rules far exceeds this number in large

classifiers. Though there are ways to move up more rules by apply-

ing the heuristic while the tree is being built, instead of after being

built, doing so would increase the number of memory accesses to

search the moved-up rules at each node. Further, the moving-up

does not cover the cases where some but not all of the rules are

common to only some of the siblings. The root of the problem lies

in the fact that HyperCuts does not prevent replication but attempts

to cure replication after the cuts have caused replication. We show

that our idea of separable trees simply prevents nearly all replica-

tion. Second, HyperCuts inherits the redundant child pointers of

HiCuts’ third heuristic (see Section 2.1). Because the average node

FIGURE 1. HiCuts Example in a 2D Rule Space

Y

X

R4

R3

R4
R5

R2 R6

Leaf 2

Root

Cut 0

(Cut 1)

Node 1

R1
R2

Leaf 4

R2
R5

Leaf 1

R6
Leaf 3

R4
Leaf 5

Cut 1

R3

(Cut 0)

R1

R5
209

degree tends to be high for large classifiers (e.g., 50), this redun-

dancy is significant. We show that our idea of equi-dense cuts sig-

nificantly reduces this redundancy.

3 EFFICUTS
Despite its optimizations, HyperCuts incurs considerable mem-

ory overhead for large classifiers (e.g., in many classifiers with

100,000 rules, HyperCuts replicates rules by factors of 2,000-

10,000 on average). Recall from Section 1 that our key observa-

tions are that the fundamental sources of memory overhead in

HiCuts and HyperCuts are the large variations in (1) the size of

overlapping rules, which are numerous, and (2) the density of the

rule space. Because the algorithms build a single tree with overlap-

ping small and large rules, the large variation in rule size causes

significant rule replication. Fine cuts to separate the smaller rules

needlessly partition the larger rules without achieving much rule

separation while incurring considerable replication and memory

overhead. The algorithms employ equi-sized cuts so as to identify

the matching child via simple indexing into the child pointer array

(Section 2.1). However, the large variation in the rule-space den-

sity causes a considerable increase in the tree size. Fine cuts to sep-

arate densely-clustered rules needlessly partition the sparse parts

of the rule space which create many ineffectual tree nodes that sep-

arate only a few rules while incurring considerable overhead.

Our proposal, called EffiCuts, addresses the above overhead via

the new ideas of separable trees combined with selective tree

merging to tackle the variation in the size of overlapping rules and

equi-dense cuts to tackle the variation in the rule-space density.

EffiCuts also leverages equi-dense cuts to achieve fewer accesses

per node than HiCuts and HyperCuts by co-locating parts of infor-

mation in a node and its children. EffiCuts extends HyperCuts with

these four ideas while retaining HyperCuts’ basic framework to

perform the cuts. Specifically, EffiCuts employs all of HiCuts’ and

HyperCuts’ heuristics except for rule moving-up.

3.1 Separable Trees
To understand the concept of separable trees, we first pinpoint

the root causes of rule replication in HiCuts and HyperCuts.

Clearly, a single tree with overlapping small and large rules

requires fine cuts to separate the small rules but causes replication

of the large rules. In Figure 2, we see that the cuts that separate the

small rules A, B, and C would partition the large rules D, E, and F

resulting in significant rule replication. We find that HyperCuts

replicates each of the largest of rules in our 100,000-rule classifiers

by several hundred thousand times. Placing small and large rules in

different trees would reduce this replication (e.g., in Figure 2, one

tree for A, B, and C, and another for D, E, and F). Large rules are

identified easily as those that have wildcards in many fields.

Indeed, previous work [17] briefly suggests the possibility of creat-

ing two trees — one for rules with many wildcard fields and the

other for the rest1. One could extend the scheme to more than two

trees by partitioning the classifier into subsets of some number of

similarly-sized rules so that each subset is in a different tree. We

tried such an extension where we sorted the rules by size and

grouped the largest 1% of the rules, the next 2%, the next 4%, the

next 10%, and the remainder of the rules into distinct trees. This

assignment achieved a factor of 10 reduction in replication. How-

ever, there was still considerable replication.

We discovered that there is another factor called separability,

more fundamental than rule size, which determines the extent of

replication. While the above scheme ignores the rule space’s

dimensions, separability considers variability of rule size in each

dimension. Separability enables our solution to avoid assigning

and optimizing arbitrary percentages of the rules to distinct trees.

As discussed in Section 2.1, cutting the dimensions in which

small and large rules overlap results in significant replication. In

Figure 2, cutting the X dimension causes rampant replication of

rules D, E, and F. As such, simply creating distinct trees for small

and large rules would still incur replication if the large rules are not

separable — i.e., there are dimensions in which not all the rules are

either small or large. For example in Figure 2, even if the rules D,

E, and F are in a different tree than the rules A, B, and C, the rules

D and F would still be replicated.

To eliminate overlap among small and large rules, we separate

all small and large rules by defining a subset of rules as separable

if all the rules in the subset are either small or large in each dimen-

sion (e.g., in Figure 2, {A, B, C}, {D}, and {E, F} are separable).

We build a distinct tree for each such subset where each dimension

can be cut coarsely to separate the large rules, or finely to separate

the small rules without incurring replication.

3.1.1 Identifying Separable Rules
To identify separable rules, we assume that wildcards imply

large rules. (We refine this assumption later.) Accordingly, separa-

bility implies that all the rules in a tree are either wildcard or non-

wildcard in each field; otherwise, cuts separating the non-wildcard

rules would replicate the wildcard rules. Indeed, because non-wild-

card rules typically contribute many unique projections in a field,

HiCuts and HyperCuts would choose the field to cut, replicating

wildcard rules (the first heuristic in Section 2.1). In contrast, with

separable rules, HyperCuts can cut the non-wildcard fields with

many unique projections without replicating the wildcard rules.

Based on the above considerations, our categories assuming the

standard, five-dimensional IPv4 classifier are:

• Category 1: rules with four wildcards

• Category 2: rules with three wildcards

• Category 3: rules with two wildcards

• Category 4: rules with one or no wildcards

To capture separability, each category is broken into sub-cate-

gories where the wildcard rules and non-wildcard rules are put in

different sub-categories on a per-field basis. Accordingly, Cate-

FIGURE 2. Separability of Rules

A

E

B

C

F

D

Y

X

1. HyperCuts briefly mentions this two-tree scheme to reduce rep-

lication but does not pursue it further. In the results, the analysis

claims that simultaneously cutting multiple dimensions suppresses

the replication problem especially for rules with wildcard fields.
210

gory 1 has a sub-category for each non-wildcard field, for a total of
5C1 = 5 sub-categories. Category 2 has a sub-category for each pair

of non-wildcard fields for a total of 5C2 = 10 sub-categories. Cate-

gory 3 has a sub-category for each triplet of non-wildcard fields for

a total of 5C3 = 10 sub-categories. Because Category 4 contains

mostly small rules, we find that further sub-categories are unneces-

sary (but can be employed if needed).

So far, we have equated large rules with wildcards. However, a

true wildcard may be too strict a condition to classify a rule as

large. For instance, a value of “0.0.0.0/1” for the source IP field is

not a wildcard, but is large compared to other possible values for

the field (e.g., a few IP addresses). Therefore, we broaden our defi-

nition of largeness in a dimension to include rules that cover a

large fraction, called largeness_fraction, of the dimension. In prac-

tice, rules are bimodal in that they cover either a large fraction of

the dimension (e.g., 95% or more) or a small fraction (e.g., 10% or

less). Consequently, varying largeness_fraction between 0.1 and

0.95 does not produce any noticeable effect on the resulting cate-

gorization. For our results, we use largeness_fraction of 0.5 for

most fields. Because the source IP and destination IP fields are

much larger than the other fields, we use a smaller

largeness_fraction of 0.05 for these fields classifying rules cover-

ing even 5% of the fields to be large.

After partitioning a classifier into the above sub-categories, we

employ HyperCuts to build a distinct tree for each sub-category.

3.2 Selective Tree Merging
The above categorization produces a total of 26 sub-categories

requiring 26 distinct trees. In practice, however, many of the sub-

categories may be empty (e.g., we saw, on average, 11 and, at

most, 15 non-empty sub-categories for our 100,000-rule classifi-

ers). Nevertheless, a key issue is that each packet has to look up all

the separable trees requiring more lookups than those needed in

HiCuts’ or HyperCuts’ single tree. We see that EffiCuts and

HyperCuts make opposite choices in the memory size-bandwidth

trade-off. To achieve a good compromise in this trade-off, we

observe that merging two separable trees usually results in a tree

whose depth, and hence number of accesses, is much less than the

sum of the original trees’ depths. However, merging arbitrary sepa-

rable trees may completely destroy separability and result in sig-

nificant rule replication. Therefore, we propose selective tree

merging which merges two separable trees mixing rules that may

be small or large in at most one dimension. For instance, a Cate-

gory 1 tree that contains rules with non-wildcards in field A (and

wildcards in the other fields) is merged with Category 2 tree that

contains rules with non-wildcards in fields A and B, and wildcards

in the rest of the fields. This choice ensures that wildcards (of Cat-

egory 1) are merged with non-wildcards (of Category 2) in only

field B; in each of the rest of the fields, either non-wildcards are

merged with non-wildcards (field A) or wildcards with wildcards

(the rest). We find that this compromise on separability signifi-

cantly reduces the number of lookups while incurring only modest

rule replication. One exception is the single Category 4 tree which

is not broken into sub-categories, and hence, already mixes wild-

card and non-wildcards in multiple fields. As such, merging this

tree with other Category 3 trees would cause such mixing in addi-

tional fields and would lead to significant rule replication. There-

fore, we do not merge the Category 4 tree with any other tree.

Despite the above constraint of merging wildcards with non-

wildcards in at most one field, there are many choices for merging.

For example, a given Category 2 tree which has two non-wildcard

fields can merge with any of (a) two Category 1 trees with non-

wildcards in one of the two fields, or (b) three Category 3 trees

with non-wildcards in the two fields. Category 2 trees cannot

merge with each other or Category 4 trees without violating the

merging constraint because such a merge would lead to wildcards

merging with non-wildcards in at least two fields. This reasoning

can be generalized to state that for the merging constraint not to be

violated, a Category i tree can merge only with either a Category i-

1 tree or a Category i+1 tree. The specific choices for each tree can

be worked out as done in the above example. Further, once a tree

has been merged with another tree, the merged tree cannot be

merged with yet another tree without violating the merging con-

straint. This observation is true because an additional merge would

imply that either multiple trees from the same category have been

merged together, or Category i-1 and Category i+1 trees have been

merged, both of which violate the merging constraint. Therefore,

merging can occur with at most one other tree.

To choose the pairs of trees for merging, we observe that merg-

ing smaller trees (containing fewer rules) usually results in less

replication than merging larger trees. We also observe that trees

generally contain more rules and are larger as we go from Cate-

gory 1 to Category 4 (i.e., down the bulleted list of categories in

Section 3.1.1). Accordingly, we consider one tree at a time from

Category 2 or Category 3 (in that order), and we try to merge a

Category i tree with a suitable Category i-1 tree — i.e., one that

satisfies the merging constraint. There are two cases to consider:

(a) If there are more than one suitable Category i-1 tree then we

greedily choose the tree so that the field in which the small and

large rules are mixed is the smallest (e.g., source and destination IP

fields at 4 bytes are larger than port and protocol fields at 2 bytes).

The rationale is that mixing small and large rules in smaller fields

leads to less replication than in larger fields. This greedy choice

may be sub-optimal in that the chosen tree may be the only suit-

able choice for another tree which would now remain unmerged.

However, we find that the greedy choice works well in practice

because there are not many suitable Category i-1 trees from which

to choose. (b) If no suitable Category i-1 tree exists or all the suit-

able Category i-1 trees have already merged with other trees, then

we choose a Category i+1 tree that satisfies the merging constraint

using the same greedy choice as case (a).

While selective tree merging reduces the number of trees, each

packet still has to look up a handful of trees (e.g., 5-6 trees). Con-

sequently, the sequential search of the rules at the leaves of each

tree would add up to a significant number of memory accesses if

we are limited to retrieving only one rule instead of wider

accesses. However, the leaves in HiCuts and HyperCuts hold

pointers to the rules which are held in a table separate from the

trees. The rules at a leaf need not be contiguous in the rule table,

preventing wide-access retrievals. In EffiCuts, we place a copy of,

instead of a pointer to, each rule at the leaf, forcing the rules to be

in contiguous memory locations. One may think that this strategy

may need extra memory because rules (13 bytes) are larger than

pointers (4 bytes). However, if a rule is not replicated then this

strategy requires less memory as it stores only the rule, and not a

pointer and the rule. Because EffiCuts’ rule replication is minimal,

these two effects nearly cancel each other resulting in little extra

memory. HiCuts’ and HyperCuts’ significant rule replication, how-

ever, makes this strategy unprofitable, but they lookup only one
211

leaf of a single tree, and hence search fewer rules than EffiCuts,

which obviates wide-access retrievals.

Additionally, we also tried using fewer rules at each leaf to

reduce the linear search overhead at the cost of some increase in

the tree depths. We found that using 4 or 16 rules results in similar

number of memory accesses but the latter has less rule replication.

3.3 Equi-dense Cuts
Recall that HyperCuts’ equi-sized cuts, which are powers of

two in number, simplify identification of the matching child but

result in redundancy due to rule-space density variation. Fine cuts

to separate densely-clustered rules needlessly partition the sparse

parts of the rule space resulting in many ineffectual tree nodes that

separate only a few rules but incur considerable memory overhead.

This redundancy primarily adds ineffectual nodes and also causes

some rule replication among the ineffectual nodes.

In Figure 3, we see that fine cuts are needed to separate the

rules X, Y, and Z while minimizing the tree depth. However, such

fine cuts partition and replicate the rules A, B, and C, and result in

various subsets of the rules to be common among the siblings Leaf

1 through Leaf 5. While Leaf 4 and Leaf 5 are fully redundant con-

taining identical rules, Leaf 1 and Leaf 2 are partially redundant as

they share some of the rules. Instead of fine cuts, if coarse cuts

were used then we would need additional cuts to separate the rules

X, Y, and Z. Recall that HiCuts and HyperCuts do not completely

remove this redundancy. HiCuts’ node merging (third heuristic in

Section 2.1) merges the fully redundant Leaf 4 and Leaf 5 but

incurs redundant child pointers in the parent Node 1. HyperCuts’

moving up (Section 2.2) cannot remove the partial redundancy in

the rules of siblings Leaf 1 and Leaf 2 where some of the rules are

common among only some of the siblings.

The child-pointer redundancy enlarges the node’s child-pointer

array which contributes about 30-50% of the total memory for the

tree. Consequently, reducing this redundancy significantly reduces

the total memory. Similarly, the partial redundancy in siblings’

rules manifests as rule replication which is rampant in HyperCuts

even after employing node merging and moving up.

To tackle both the child-pointer redundancy and partial redun-

dancy in siblings’ rules, we propose equi-dense cuts which are

unequal cuts that distribute a node’s rules as evenly among the

children as possible. Equi-dense cuts achieve fine cuts in the dense

parts of the rule space and coarse cuts in the sparse parts. We con-

struct our unequal cuts by fusing unequal numbers of HyperCuts’

equi-sized cuts. By fusing redundant equi-sized cuts, our unequal

cuts (1) merge redundant child pointers at the parent node into one

pointer and (2) remove replicas of rules in the fused siblings.

3.3.1 Fusion Heuristics
For our fusion of equi-sized cuts to produce unequal cuts, we

propose a conservative, a moderate, and an aggressive heuristic.

Our simple and conservative heuristic is to fuse contiguous sib-

ling leaves (i.e., corresponding to contiguous values of the bits

used in the cut) if the resulting node remains a leaf (i.e., has fewer

than binth rules). This fusion does not affect the tree depth but

reduces the number of nodes in the tree and reduces rule replica-

tion among siblings. This heuristic serves to remove fine cuts in

sparse regions along with the accompanying rule replication.

While HiCuts’ node merging fuses identical siblings(Section 2.1),

this heuristic fuses non-identical siblings.

To capture rule replication in denser regions, our moderate heu-

ristic fuses contiguous, non-leaf siblings if the resulting node has

fewer rules than (1) the sum of the rules in the original nodes, and

(2) the maximum number of rules among all the siblings of the

original nodes (i.e., including those siblings that are not being

fused). The first constraint ensures that the original nodes share

some rules so that the heuristic reduces this redundancy. The sec-

ond constraint decreases the chance of the tree becoming deeper

due to the fusion. However, there is no guarantee on the tree depth

because the resultant node could have a different set of rules than

the original nodes which may lead to a deeper tree.

Our aggressive heuristic is to fuse non-leaf nodes as long as the

resulting node does not exceed some percentage (e.g., 40%) of the

number of rules in the sibling with the maximum number of rules.

This heuristic always reduces the number of children and thereby

shrinks the child-pointer array. However, because the heuristic fre-

quently leads to more replication and/or a deeper tree, we omit this

heuristic in our implementation.

3.3.2 Lookup by Packets
Because equi-dense cuts are unequal, identifying the matching

child at a tree node is more involved than simple indexing into an

array. Equi-sized cuts, which are powers of two in number, result

in a one-to-one, ordered correspondence between the index values

generated from the bits of the appropriate field(s) of the packet and

the entries in the child-pointer array at each node. This correspon-

dence enables simple indexing into the array (Section 2.1). In con-

trast, unequal cuts destroy this correspondence by fusing multiple

equi-sized cuts into one equi-dense cut, causing multiple indices to

map to the same array entry. Consequently, simple indexing would

not work and an incoming packet needs to compare against all the

array entries to find the matching child.

To control the complexity of the comparison hardware, we con-

strain the number of unequal cuts per node, and hence the number

of comparators needed, not to exceed a threshold, called max_cuts

(8 in our experiments). For nodes that need more cuts, we fall back

FIGURE 3. Variation in Density of Rule Space

X
Y

Z

A

C

B

Leaf 1
X
Z

Leaf 2
Y
Z

Leaf 5
C
B

Leaf 3
A

Leaf 4
C
B

Node 1

C

FIGURE 4. Equi-dense Cuts: (a) Fusion (b) Lookup

Equi-sized
Array

Fused
Array

0

31

0

10
12

31

Node i

0
10
12

Indices:
Packet
Index = 18

(a) (b)

j lk

j
k
l

212

on equi-sized cuts, as in HiCuts and HyperCuts, with the accompa-

nying redundancy. We use one bit per node to indicate whether the

node uses equi-sized or equi-dense cuts. While the comparisons

add some complexity to the processing at each node, we argue that

this complexity is justified because of the immense reduction in

memory size achieved by equi-dense cuts. We consider the node

processing overhead in our results. To avoid memory management

problems due to multiple node sizes, we always allocate space for

a node to be the larger of equi-dense and equi-sized nodes (22

bytes).

Each node using equi-dense cuts stores the number of unequal

cuts and an array of the starting indices of the cuts. To illustrate,

consider a node with 32 equi-sized cuts of which 0-9, 10-11, and

12-32 are fused into 3 equi-dense, unequal cuts (see Figure 4). An

incoming packet which generates a value of 18 would compare

against the three indices, 0, 10, and 12, stored at the parent node,

and select the closest index that is less than or equal to the packet

value, in this case 12. We note that the fusion heuristics employed

by equi-dense cuts fuse empty nodes into an adjacent non-empty

sibling, obviating HyperCuts’ region compaction. In place of the

compaction information, we store the array of indices for equi-

dense cuts. The difference between the information held in Hyper-

Cuts’ nodes and EffiCuts’ nodes are shown in Table 1.

3.4 Node Co-location
Apart from reducing memory size, equi-dense cuts have

another benefit. In HiCuts and HyperCuts, the first part of a node

holds the header identifying the dimension(s) cut at the node and

the number of cuts, and the second part holds an array of pointers

to the child nodes (Section 2.1). In EffiCuts’ nodes using equi-

dense cuts, the first part additionally holds the table of starting

indices of each cut while the second part is similar to the above. In

all three schemes, however, a packet has to look up the cut dimen-

sion and the number of cuts in each node’s first part to determine

its index into the array in the second part, and then retrieve the

child node pointer at the index. Consequently, each node requires

at least two memory accesses, as shown in Figure 5(a) (Narrow

memories would require more accesses.).

To enable each node to require only one access and thereby

achieve better memory bandwidth, we co-locate in contiguous

memory locations a node’s child-pointer array (the second part)

with all the children’s headers (their first parts), as shown in

Figure 5(b). This co-location converts the array of pointers into an

array of headers and pointers to the children’s arrays (rather than

pointers to the child nodes themselves). Accessing each such co-

located node retrieves the header of the indexed child node in addi-

tion to a pointer to the child node’s array (assuming the memory is

wide enough), thereby combining the node’s second access with

the child node’s first access. Thus, each node requires only one

reasonably-wide access. (While narrower memories would require

more than one access, the co-location would still reduce the num-

ber of accesses by one.)

The co-location precludes HiCuts’ optimization of node-merg-

ing to reduce memory where array entries point to a single shared

node instead of multiple, identical child nodes (Section 2.1). With

the co-location, the array now holds the children’s headers (and the

pointers to the children’s arrays). The headers must be unique for

each child node in order for the index calculated from the parent

node’s header to work correctly. Consequently, the headers for

identical children have to be replicated in the array, incurring some

extra memory (though identical children may still share a single

child node’s array). Fortunately, the redundancy is minimal for Eff-

iCuts’ equi-dense cuts where the nodes are forced to have only a

few children which are usually distinct (max_cuts is 8), making it

worthwhile to trade-off small amounts of memory for significant

bandwidth demand reduction. However, the redundancy would be

considerable for HiCuts and HyperCuts whose nodes usually have

hundreds or thousands of children many of which are identical,

making the co-location unprofitable for HiCuts and HyperCuts.

For the same reason, we do not apply co-location to the EffiCuts

nodes that use equi-sized cuts. Because in practice about 90% of

nodes employ equi-dense cuts rather than equi-sized cuts, this

restriction does not undo co-location’s effectiveness.

To reduce further the number of memory accesses per node, we

eliminate HyperCuts’ rule moving-up optimization in EffiCuts

because each moved-up rule requires two accesses: one for the

pointer to the rule and the other for the rule itself whereas a rule

that is not moved-up in EffiCuts would fall in a leaf where the rule

may contribute only a part of a wide access (Section 3.2). Rule

moving-up reduces HyperCuts’ rule replication, which is minimal

for EffiCuts, and therefore, the elimination makes sense.

Finally, we consider updates to the classifiers. By providing

more degrees of freedom than HiCuts and HyperCuts, EffiCuts

facilitates incremental updates in at least two ways. First, because

separable trees drastically reduce replication, updates are unlikely

Table 1: Node data in bytes

HyperCuts 2 for header (number/dimension of cuts, other infor-

mation such as internal node or leaf)

4 per moved-up rule pointer (up to 1) or leaf rule

pointer (up to binth = 16)

16 for compacted region boundary

4 per child pointer

EffiCuts 2 for header

13 per leaf rule (up to binth = 16) (leaf) or

16 for compacted region (equi-size) or

2 per unequal cut index (max_cuts = 7) (equi-dense)

4 per child pointer

FIGURE 5. Node Co-location: (a) Before and (b) After

ptr B

ptr D ptr E

ptr C

Header A

Header C

ptr F

ptr H ptr I

ptr G

Header B

Access 1

Access 2

Access 3

Access 4 Rule 1
Rule 2
Rule 3

Node D

Node E

(a)
Header B, ptr B

Header D, ptr D Header E, ptr E

Header C, ptr CAccess 1

Access 2 Rule 1
Rule 2
Rule 3

Header F, ptr F

Header H, ptr H Header I, ptr I

Header G, ptr G

(b)
213

to involve replication, and hence do not require many changes to

the tree. Second, equi-dense cuts afford new flexibility that does

not exist in HyperCuts. If a new rule falls in an already-full leaf

(i.e., a leaf with binth rules) then equi-dense cuts provide two

options: (1) the existing cuts can be nudged to create room for the

new rule by moving some of the rules from the already-full leaf to

a not-full sibling; or (2) if the leaf’s parent has fewer cuts than

max_cuts, then a cut can be added to accommodate the new rule.

4 EXPERIMENTAL METHODOLOGY
We implement HiCuts and HyperCuts faithfully capturing all

the optimizations — HiCuts’ four heuristics (Section 2.1) and

HyperCuts’ three heuristics (Section 2.2) — and setting

space_factor to 4. We slightly modify HyperCuts’ rule moving-up

heuristic. First, to reduce the memory accesses of moved-up rules

at a node, we constrain the number of moved-up rules per node to

one. Second, while HyperCuts perform the moving up as a bottom-

up pass after the tree is built (Section 2.2), we perform the moving

up as the tree is built to increase the number of moved-up rules.

The bottom-up pass moves up at most binth rules at leaves whereas

our approach moves up more rules at both internal nodes and

leaves.

We implement EffiCuts on top of HyperCuts and employ all but

the rule moving-up heuristic of HyperCuts, as mentioned in

Section 3.4. We run the EffiCuts algorithm with space_factor set to

8 and largeness_fraction set to 0.5 for all fields except source IP

and destination IP which use 0.05. Because of its significantly

lesser memory requirements, EffiCuts can use a larger

space_factor than HyperCuts.

In Table 1, we show the information stored at each node in

HyperCuts and EffiCuts. Region compaction requires 16 bytes

because information only for the dimensions being cut is neces-

sary. We assume memory widths for HiCuts, HyperCuts, and Effi-

Cuts to be 13, 22, 22 bytes, respectively, These widths ensure that

a single access returns an entire node, a pointer, or a rule. As dis-

cussed previously, HiCuts and HyperCuts require two accesses per

node, whereas EffiCuts requires one access for nodes using equi-

dense cuts, and two for nodes using equi-sized cuts.

Because we do not have access to large real-world classifiers,

we use ClassBench [16] which creates synthetic classifiers with

characteristics representative of real-world classifiers. We generate

classifiers for all the types captured by ClassBench, namely, access

control (ACL), firewall (FW) and IP chain (IPC). To study the

effect of classifier size, we generate classifiers containing 1,000,

10,000 and 100,000 rules.

5 EXPERIMENTAL RESULTS
We begin by comparing EffiCuts against HiCuts and Hyper-

Cuts in terms of memory and number of memory accesses per

packet match (Section 5.1). We then compare EffiCuts’ power and

throughput relative to TCAM and HyperCuts (Section 5.2). To

analyze HyperCuts’ and EffiCuts’ memory requirements, we

present a breakdown of the total memory into components

(Section 5.3). Finally, we isolate the effects of separable trees and

equi-dense cuts on memory (Section 5.4.1) and of co-location and

tree-merging on memory accesses (Section 5.4.2).

5.1 Memory Size and Accesses
In Figure 6, we compare EffiCuts against HiCuts and Hyper-

Cuts in terms of memory per rule (top) and worst-case number of

memory accesses (bottom). The metric memory per rule normal-

izes the memory needed across classifier sizes and also shows the

memory overhead [15]. In the X axis, we show all the twelve clas-

sifiers generated by ClassBench — five ACL, five FW, and two

IPC. We vary the classifier sizes as 1000, 10,000, and 100,000.

In the top graph, the Y axis shows bytes per rule in log scale.

For each classifier of a specific size, we show three bars, from left

to right, one each for HiCuts, HyperCuts, and EffiCuts. We see that

FIGURE 6. Total Memory (top) and Accesses (bottom) for HiCuts, HyperCuts, and EffiCuts

HiCuts HyperCuts EffiCuts

0
10

20

30

40

50

60

70

80

90

100

1K 10K 100K 1K 10K 100K 1K 10K 100K

ACL IPCFW

M
e

m
o

ry
 A

c
c
e

s
s
e

s

1

10

100

1K

10K

100K

1M

10M

100M
B

y
te

s
 p

e
r

R
u

le

1K 10K 100K 1K 10K 100K 1K 10K 100K
ACL IPCFW

HiCuts HyperCuts EffiCuts
214

as the classifier size increases within each classifier type (ACL,

FW, or IPC), HiCuts’ and HyperCuts’ memory requirements grow

quickly (the Y axis is log scale) and vary widely across classifier

types. In contrast, EffiCuts’ memory requirements are almost con-

stant across classifier types and sizes. For the 100,000-rule classifi-

ers, EffiCuts stays well below HiCuts and HyperCuts. HiCuts and

HyperCuts require significantly large memories for large firewall

classifiers due to the fact that a significant fraction of firewall rules

(about 30%) include many wildcard fields. These large rules incur

rampant replication in HiCuts and HyperCuts because of being

mixed in with the smaller rules. In contrast, EffiCuts’ separable

trees isolate these rules from the smaller rules and hence prevent

replication. As an aside, the trend between HiCuts and HyperCuts

is in line with the results reported in the HyperCuts paper. In

Table 2, we show the average total memory requirement for

HyperCuts and EffiCuts as well as the factors by which EffiCuts

reduces HyperCuts’ total memory. EffiCuts’ total memory require-

ment scales linearly with classifier size as compared to HyperCuts’

super-linear growth.

In the bottom graph. the Y axis shows the worst-case number of

memory accesses per packet for each of the schemes. Again, the

trend between HiCuts and HyperCuts matches the HyperCuts

paper results. In most cases, EffiCuts’ multiple trees require more

memory accesses than HyperCuts’ single (albeit much larger) tree.

However, EffiCuts requires on average 50% and at worst 3 times

more accesses than HyperCuts. Although EffiCuts needs more

accesses than HyperCuts, EffiCuts’ orders-of-magnitude reduction

in memory implies a much smaller SRAM than HyperCuts. In the

following section, we analyze the effect of the number of memory

accesses on packet throughput.

5.2 Comparing EffiCuts, HyperCuts, & TCAM
To get the complete picture, we compare EffiCuts to TCAM

and HyperCuts in terms of throughput (cycle time — time between

two accesses) and power. For this analysis, we use CACTI [10] to

model TCAM and SRAM. We assume a 45 nm process and model

the SRAM sizes needed for the typical case of HyperCuts and Eff-

iCuts. Additionally, recall that HyperCuts and EffiCuts require

some processing for region compaction (equi-sized cuts in Hyper-

Cuts and EffiCuts) and to determine the matching child (equi-

dense cuts in EffiCuts). Our estimate for this processing overhead

is less than the cycle time of SRAM (for 45 nm technology,

roughly 15 levels of logic for comparing and choosing one of 8 16-

bit values fit well within 170 ps which is one cycle time). Thus,

packet throughput would be limited by SRAM cycle time rather

than node processing. For TCAM, we assume 100K entries, 13-

byte width with a fairly low range-expansion factor of 2 [9]. To

achieve high throughput, CACTI employs wave-pipelined imple-

mentations [10].

Table 3 shows the throughput in terms of cycle time and per-

access energy of TCAM, HyperCuts, and EffiCuts. For HyperCuts

and EffiCuts, we also include the number of accesses and memory

size for a typical classifier from each type (ACL, FW, and IPC).

While TCAM cycle time and per-access energy are worse than

those of the HyperCuts’ and EffiCuts’ SRAMs due to raw hard-

ware differences, TCAM needs only one access whereas Hyper-

Cuts and EffiCuts need many. These numerous accesses degrade

the throughput by a factor equal to the number of accesses, causing

EffiCuts to fall behind TCAM (e.g., for ACL 100K, EffiCuts’ net

throughput is 1/(83*0.18) = 67 Mpps whereas TCAM’s throughput

is 1/7.46 = 134 Mpps). (Our TCAM throughput is close to that of

OC-768.). To address this issue, we propose to use multiple copies

of the EffiCuts’ search structure to achieve the same throughput as

TCAM, as shown in Table 3. Multiple copies are a viable option

because of EffiCuts’ small memory requirement. We see that only

1-2 copies suffice. (Both TCAM’s and EffiCuts’ throughputs can

be improved further by more copies.) We also show the number of

copies needed for HyperCuts though multiple copies may be

impractical due to its large memory.

While EffiCuts’ energy also degrades due to the numerous

accesses, TCAM’s energy is worse even after adjusting for the

number of accesses (e.g., for ACL 100K, EffiCuts’ net energy per

packet is 83*0.51 = 93.3 nJ whereas TCAM’s energy is 169.51 nJ).

Due to its large memory, HyperCuts consumes significantly more

energy than EffiCuts (e.g., for ACL 100K, EffiCuts’ net energy per

packet is 83*0.51 = 93.3 nJ whereas HyperCuts’ net energy is

37*5.57 = 206.09 nJ). Because power is a better metric for packet

classification than energy, we show HyperCuts’ and EffiCuts’

Table 2: EffiCuts’ Average Memory Reduction over HyperCuts

ACL FW IPC Mean

1K 10K 100K 1K 10K 100K 1K 10K 100K

HyperCuts (MB) 0.12 7.58 538 2.37 1151 77045 0.05 9.45 986

EffiCuts (MB) 0.06 0.59 5.11 0.05 0.63 13.3 0.03 0.58 5.77

Reduction 2.0 13 105 51 1816 5787 1.7 16 171 57.4

Table 3: Typical Power and Throughput Comparison

Classifier

Type

TCAM HyperCuts EffiCuts

C
y
cl

e

ti
m

e
(n

s)

E
n

er
g
y

(n
J
)

P
o
w

er
(W

)

#
M

em
o
ry

a
cc

es
se

s

S
iz

e

(M
B

)

C
y
cl

e

ti
m

e
(n

s)

E
n

er
g
y

(n
J
)

#
 C

o
p

ie
s

P
o
w

er

(W
)

#
M

em
o
ry

a
cc

es
se

s

S
iz

e
(M

B
)

C
y
cl

e

ti
m

e
(n

s)

 E
n

er
g
y

(n
J
)

#
 C

o
p

ie
s

P
o
w

er

(W
)

ACL 100K 7.46 169.5 23 37 1084 0.18 5.6 1 31 83 5.3 0.18 0.51 2 6

FW 100K 7.46 169.5 23 48 2433 0.21 8.3 2 81 53 3.7 0.20 0.43 2 4

IPC 100K 7.46 169.5 23 24 575 0.17 4.3 1 26 17 5.5 0.18 0.51 1 3
215

power relative to TCAM’s (where power = copies * per-access

energy/cycle time). We see that EffiCuts consumes a factor of 4-8

less power than TCAM. Due to its large memory, HyperCuts con-

sumes more power than TCAM. Further, HyperCuts consumes

more power than EffiCuts despite requiring fewer accesses. We

note that though the cycle times and energies of real products may

be different than our numbers, the overall improvements of Effi-

Cuts will likely hold.

5.3 Breakdown of Memory into Components
To analyze the memory required by EffiCuts, we decompose

the memory requirement per rule into two components: overhead

for nodes (excluding HyperCuts’ moved-up rule pointers), and

storage for the rules in the leaves (including HyperCuts’ moved-up

rule pointers). Recall that EffiCuts’ leaves contain rules while

HyperCuts’ leaves contain rule pointers. We choose this decompo-

sition because our separable trees decrease the storage for rules by

reducing rule replication and our equi-dense cuts decrease the stor-

age for nodes by fusing nodes. In Figure 7, we show these two

components for HyperCuts and EffiCuts. In the X axis, we show

one typical classifier for each type (ACL, FW, and IPC) while

varying the classifier size as 1000, 10,000, and 100,000 rules. We

show only one typical classifier per type to avoid cluttering the

graph. The Y axis shows in log scale the two components and the

total memory for the two schemes. The bars are ordered, from left

to right, as node storage for HyperCuts and EffiCuts, rule pointer

storage for HyperCuts, rule storage for EffiCuts, and the total

memory for HyperCuts and EffiCuts. Though the components add

up to the total, it may not seem so due to the log scale.

We see that, in most cases, EffiCuts’ node storage is signifi-

cantly less than that of HyperCuts. This reduction is due to both

separable trees which drastically reduce rule replication and equi-

dense cuts which fuse redundant nodes. Similarly, we see that in

all cases EffiCuts’ rule storage is significantly less than Hyper-

Cuts’ rule pointer storage, although rules are larger than the point-

ers (13 versus 4 bytes). This reduction is larger than that for

internal node storage and is primarily due to separable trees.

To support the above analysis, we show the amount of rule rep-

lication and the number of nodes in the typical case for both

HyperCuts and EffiCuts in Table 4. We quantify rule replication as

the ratio between the number of rules in the classifier and the total

number of rules (EffiCuts) or rule pointers (HyperCuts) in the tree.

We see that EffiCuts reduces both rule replication and node count

by large factors. The reduction in the rule replication is generally

more than that in the node count, matching the data shown in

Figure 7 and the discussion above. For the studied classifiers, Effi-

Cuts’ replication remains below the remarkably low factor of 2 in

the typical case and 9 in the worst case (not shown). Further, in 33

of the 36 classifiers, replication remains below a factor of 3.

Finally, while Table 4 shows the typical rule replication factor

for HyperCuts, we show the full distribution in Figure 8. The X

axis shows the rules binned into 100 bins of increasing rule size

left to right. The Y axis shows in log scale the replication factor for

the rules in each bin. We see that the smaller rules are replicated

less than the larger rules while the largest of rules are replicated

more than a few hundreds of thousands of times. More than 80%

of the FW rules are replicated more than 1000 times whereas about

35% and 10% of the IPC and ACL rules, respectively, are repli-

cated between 100-1000 times. We do not show this distribution

for EffiCuts because its replication factor is fairly low.

5.4 Sensitivity Study
In this section we isolate the effects of each of EffiCuts’ four

novel ideas — separable trees, equi-dense cuts, selective tree

merging, and node co-location — on memory and the number of

memory accesses. Because separable trees and equi-dense cuts

reduce replication but not the number of memory accesses, we

show their effect only on memory (Section 5.4.1), and vice versa

for tree merging and co-location (Section 5.4.2).

FIGURE 7. HyperCuts & EffiCuts Memory Breakdown

1

10

100

1K

10K

100K

B
y
te

s
 p

e
r

R
u

le
Node HyperCuts

Node EffiCuts

RulePtr HyperCuts

Rule EffiCuts

Total HyperCuts

Total EffiCuts

1K 10K 100K 1K 10K 100K 1K 10K 100K
ACL FW IPC

Table 4: Typical Memory Reduction Comparison

T
y
p

e

S
iz

e

HyperCuts EffiCuts

R
u

le
 r

ep
l-

ra
ti

o

#
N

o
d

es

(x
 1

0
3
)

R
u

le
 r

ep
l.

ra
ti

o

#
N

o
d

es

(x
 1

0
3
)

R
u

le
re

p
l.

re
d

u
ct

io
n

#
N

o
d

es

re
d

u
ct

io
n

A
C

L

1k 7 2 1.02 0.2 7 10

10k 115 280 1.06 2.1 108 133

100k 2078 27412 1.07 28 1942 997

F
W

1k 313 47 1.3 0.3 241 157

10k 9396 10993 1.89 7.4 4971 1486

100k 4611 77530 1.09 62 4230 1255

IP
C

1k 5 1 1.02 0.1 5 10

10k 99 196 1 6.7 99 29

100k 1140 22794 1 67 1140 341

FIGURE 8. Rule Replication Factor in HyperCuts

0 20 40 60 80

Bin Number (sorted from smallest to largest rule)

1

10

100

1K

10K

100K

R
e

p
lic

a
ti
o

n
 F

a
c
to

r

ACL FW IPC
216

5.4.1 Isolating Separability and Equi-dense Cuts
In Figure 9, the Y axis shows in log scale, from left to right, the

memory per rule for the original EffiCuts, EffiCuts without separa-

ble trees, EffiCuts using a static distribution of rules into trees

based on size instead of separability, and EffiCuts without equi-

dense cuts (i.e., all cuts are equi-sized).The static distribution sorts

the rules by size and then groups the largest 1% of the rules, the

next 2%, the nest 4%, the next 10% and the remainder of the rules

(83%) into distinct trees (as described in Section 3.1). Similar to

Figure 7, the X axis shows one typical classifier for each type

(ACL, FW, and IPC) while varying the classifier size as 1000,

10,000, and 100,000 rules.

Figure 9 shows that the original EffiCuts is better than EffiCuts

without separable trees and EffiCuts without equi-dense cuts by

several factors and factors of 2-4, respectively (recall that the Y

axis is log scale). While the impact of equi-dense cuts is smaller

than that of separable trees or the static distribution scheme, the

former’s impact is obscured by an interplay with node co-location.

EffiCuts without equi-dense cuts does not employ node co-location

which modestly increases memory for the original EffiCuts and

offsets the memory reduction achieved by equi-dense cuts. Thus,

both separability and equi-dense cuts are important. Though the

static distribution scheme falls behind separability, the scheme

achieves about 10x memory reduction over HyperCuts. Thus,

while simply separating small and large rules without considering

the rule-space’s dimensions reduces rule replication, separating

small and large rules on a per-dimension basis nearly eliminates it.

5.4.2 Isolating Selective Tree Merging & Co-location
Figure 10 shows our representative classifiers along the X axis

and shows memory accesses along the Y axis. The bars, from left

to right, show the base EffiCuts algorithm, EffiCuts without tree-

merging, and EffiCuts without co-location. Both variants perform

considerably worse than EffiCuts. Co-location effectively halves

the number of accesses from two accesses per node to one. The

reduction is of course, not quite half, because unfused nodes are

not co-located (Section 3.4). Tree merging, though not as effective

as co-location, also contributes significantly to access reduction,

30% on average. In many cases, tree merging reduces the number

of trees by 50-60% compared to the unmerged trees, thereby lin-

early searching the rules in only half as many leaves, while only

slightly increasing tree depth.

6 RELATED WORK
Packet classification is a well-studied problem addressed by

algorithmic and TCAM approaches. Previous algorithms to

address this problem can be classified as being based on bit vec-

tors, cross producting, tuple search, and decision trees. Bit-vector

approaches [8] match incoming packets to rules on each dimension

to produce per-dimension bit vectors which are then ANDed.

These approaches require large bit vectors that grow quadratically

with the number of rules. Aggregration schemes [2] compress the

bit vectors by exploiting the vectors’ sparseness. However, the

compression achieved is modest in the presence of wildcards.

Cross-producting approaches [5] look up per-dimension tables

for all the dimensions in parallel and combine the results of the

per-dimension look-ups via one or more look-ups of cross-product

tables. Further, each table look up can be sped up by hashing [7].

While the number of look-ups is deterministic, the cross-product

tables grow rapidly with the classifier size. Grid-of-tries schemes

[1] prune the cross-product space by first considering the cross

product of only the two dimensions of source IP and destination IP,

and then linearly searching the matching rules. However, the initial

two-dimensional tables grow rapidly with the classifier size.

Another approach shrinks the cross-product tables by storing only

the valid cross products [15]. However, the tables have to be

searched, instead of being indexed, incurring many accesses.

Tuple-search approaches [14] exploit the fact that the number

of unique prefix lengths for each dimension is far fewer than the

number of rules. The approaches partition the classifier on the

basis of these lengths allowing incoming packets to construct a

hash index for each partition. The partitions are looked-up in paral-

lel to find the matching rules which are then pruned based on their

priority. However, the partition size is unconstrained and there may

be hash collisions, resulting in unpredictable performance.

We have extensively discussed the decision-tree approaches

HiCuts and HyperCuts throughout the paper. Another decision tree

approach, called Common Branches [3], reduces rule replication

by placing the about-to-be replicated rules at the node where repli-

cation would occur. The rules at a node are searched linearly. How-

ever, the amount of linear search is unconstrained and often results

in long searches which degrade performance. A recent work,

HyperSplits [11], attempts to balance the tree by splitting a dimen-

sion into two unequal parts containing nearly equal number of

rules. Because of being restricted to splitting only one dimension

into two parts, HyperSplits incurs worse depth than HiCuts. As

mentioned in Section 1, Modular packet classification [17] reduces

FIGURE 9. Impact of Separability & Equi-dense Cuts

1

10

100

1K

10K

100K

1M

B
y
te

s
 p

e
r

R
u

le
EffiCuts

EffiCuts - static

EffiCuts without separable trees

EffiCuts without equi-dense cuts

1K 10K 100K 1K 10K 100K 1K 10K 100K
ACL FW IPC

FIGURE 10. Impact of Tree Merging & Co-location

40

60

80

100

120

140

160

180
200

1K 10K 100K 1K 10K 100K 1K 10K 100K
ACL FW IPC

M
e

m
o

ry
 A

c
c
e

s
s
e

s

20
0

EffiCuts EffiCuts without tree merging
EffiCuts without co-location
217

rule replication by binning the rules into multiple trees based on a

selected set of prefixes. In contrast, EffiCuts bins rules based on

separability, drastically reducing rule replication.

Previous work [13] optimizes TCAM power by partitioning the

classifier into subsets each of which is identified by a prefix. How-

ever, evenly distributing the rules while achieving reasonably-sized

sub-arrays is hard. Other work [9] reduces range expansion in

TCAM by representing ranges as ternary values instead of pre-

fixes. Our results in Section 5.2 assume a factor of 2 for range

expansion which is well under that achieved in [9].

7 CONCLUSION
Previous decision-tree algorithms for packet classification,

such as HiCuts and HyperCuts, incur considerable memory over-

head due to two key issues: (1) Variation in rule size: The algo-

rithms’ fine cuts for separating the small rules replicate the large

rules that overlap with the small rules. (2) Variation in rule-space

density: The algorithms’ equi-sized cuts to separate the dense parts

needlessly partition the sparse parts resulting in many ineffectual

nodes that hold only a few rules. We proposed EffiCuts which dras-

tically reduces the overhead. To address the first issue, we elimi-

nate overlap among small and large rules by separating small and

large rules in each dimension into distinct separable trees so that

each dimension can be cut finely or coarsely without incurring rep-

lication. To reduce the multiple trees’ extra accesses which

degrade throughput, we selectively merge separable trees mixing

rules that may be small or large in at most one dimension. In the

trade-off between memory size and bandwidth, HyperCuts consid-

erably increases size to gain some bandwidth whereas EffiCuts

modestly degrades bandwidth to reduce size drastically. To address

the second issue, we employ unequal, equi-dense cuts which dis-

tribute a node’s rules as evenly among the children as possible,

avoiding ineffectual tree nodes at the cost of some small process-

ing overhead in the tree traversal. Equi-dense cuts enable us to

reduce the number of accesses per tree node by co-locating parts

of a node and its children.

Using ClassBench [16], we showed that for classifiers with

1000 to 100,000 rules (1) EffiCuts drastically reduces the worst-

case rule replication to less than a factor of nine as compared to

HyperCuts’ factor of several thousands; and (2) For similar

throughput, EffiCuts needs a factor of 57 less memory than Hyper-

Cuts and a factor of 4-8 less power than TCAM. By reducing the

total memory of decision tree-based algorithms by orders of mag-

nitude, EffiCuts greatly lowers the barrier for their adoption.

Schemes like EffiCuts will likely be valuable in the future when

larger classifiers will need to be looked up at higher throughputs

while consuming reasonable power.

ACKNOWLEDGMENTS
We thank our shepherd, Jon Turner, for his valuable comments.

This work is supported, in part, by a Clare Booth Luce fellowship.

REFERENCES
[1] F. Baboescu, S. Singh, and G. Varghese. Packet Classification

for Core Routers: Is there an alternative to CAMs? In Proceed-

ings of the 22nd IEEE Conference on Computer Communications

(INFOCOM ’03), pages 53 – 63 vol.1, 2003.

[2] F. Baboescu and G. Varghese. Scalable Packet Classification. In

Proceedings of the ACM SIGCOMM ’01 Conference on Applica-

tions, Technologies, Architectures, and Protocols for Computer

Communication (SIGCOMM ’01), pages 199 – 210, 2001.

[3] E. Cohen and C. Lund. Packet Classification in Large ISPs: De-

sign and Evaluation of Decision Tree Classifiers. In Proceedings

of the ’05 International Conference on Measurement and Mod-

eling of Computer Systems (SIGMETRICS ’05), pages 73 – 84,

2005.

[4] A. Feldman and S. Muthukrishnan. Tradeoffs for Packet Classi-

fication. In Proceedings of the 19th IEEE Conference on Com-

puter Communications (INFOCOM ’00), pages 1193 – 1202

vol.3, 2000.

[5] P. Gupta and N. McKeown. Packet Classification on Multiple

Fields. In Proceedings of the SIGCOMM ‘99 Conference on Ap-

plications, Technologies, Architectures, and Protocols for Com-

puter Communication (SIGCOMM ’99), pages 147–160, 1999.

[6] P. Gupta and N. McKeown. Classifying Packets with Hierarchi-

cal Intelligent Cuttings. IEEE Micro, 20(1):34 – 41, 2000.

[7] J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar. Chisel: A

Storage-efficient, Collision-free Hash-based Network Process-

ing Architecture. In Proceedings of the 33rd Annual Internation-

al Symposium on Computer Architecture (ISCA ’06), pages 203

– 215, 2006.

[8] T. V. Lakshman and D. Stiliadis. High-speed Policy-based Pack-

et Forwarding using Efficient Multi-dimensional Range Match-

ing. In Proceedings of the ACM SIGCOMM ’98 Conference on

Applications, Technologies, Architectures, and Protocols for

Computer Communication (SIGCOMM ’98), pages 203 – 214,

1998.

[9] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary. Al-

gorithms for Advanced Packet Classification with Ternary

CAMs. In Proceedings of the ACM SIGCOMM ’05 Conference

on Applications, Technologies, Architectures, and Protocols for

Computer Communication (SIGCOMM ’05), pages 193 – 204,

2005.

[10] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.

CACTI 6.0: A Tool to Model Large Caches. Technical Report

HPL-2009-85, HP Labs.

[11] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li. Packet Classification

Algorithms: From Theory to Practice. In Proceedings of the 28th

IEEE Conference on Computer Communications (INFOCOM

’09), pages 648 – 656, 2009.

[12] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet Classi-

fication using Multidimensional Cutting. In Proceedings of the

ACM SIGCOMM ’03 Conference on Applications, Technolo-

gies, Architectures, and Protocols for Computer Communication

(SIGCOMM ’03), pages 213 – 224, 2003.

[13] E. Spitznagel, D. Taylor, and J. Turner. Packet classification us-

ing extended TCAMs. In Proceedings of the 11th IEEE Interna-

tional Conference on Network Protocols (ICNP ’03), page 120,

2003.

[14] V. Srinivasan, S. Suri, and G. Varghese. Packet classification us-

ing tuple space search. In Proceedings of the ACM SIGCOMM

’99 conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication (SIGCOMM ’99),

pages 135 – 146, 1999.

[15] D. Taylor and J. Turner. Scalable packet classification using dis-

tributed crossproducing of field labels. In Proceedings of the 24th

IEEE Conference on Computer Communications (INFOCOM

’05), pages 269 – 280 vol. 1, 2005.

[16] D. E. Taylor and J. S. Turner. Classbench: A Packet Classifica-

tion Benchmark. IEEE/ACM Transactions on Networking

(TON), 15(3):499 – 511, 2007.

[17] T. Woo. A Modular Approach to Packet Classification: Algo-

rithms and Results. In Proceedings of the 19th IEEE Conference

on Computer Communications (INFOCOM ’00), pages 1213 –

1222 vol.3, 2000.
218

	Categories and Subject Descriptors:
	General Terms:
	Keywords:
	1 Introduction
	2 Background
	2.1 HiCuts
	FIGURE 1. HiCuts Example in a 2D Rule Space

	2.2 HyperCuts

	3 EffiCuts
	FIGURE 2. Separability of Rules
	3.1 Separable Trees
	3.1.1 Identifying Separable Rules

	3.2 Selective Tree Merging
	3.3 Equi-dense Cuts
	FIGURE 3. Variation in Density of Rule Space
	3.3.1 Fusion Heuristics
	FIGURE 4. Equi-dense Cuts: (a) Fusion (b) Lookup

	3.3.2 Lookup by Packets
	Table 1: Node data in bytes

	3.4 Node Co-location
	FIGURE 5. Node Co-location: (a) Before and (b) After

	4 Experimental Methodology
	FIGURE 6. Total Memory (top) and Accesses (bottom) for HiCuts, HyperCuts, and EffiCuts

	5 Experimental Results
	5.1 Memory Size and Accesses
	Table 2: EffiCuts’ Average Memory Reduction over HyperCuts

	5.2 Comparing EffiCuts, HyperCuts, & TCAM
	Table 3: Typical Power and Throughput Comparison

	5.3 Breakdown of Memory into Components
	FIGURE 7. HyperCuts & EffiCuts Memory Breakdown
	Table 4: Typical Memory Reduction Comparison
	FIGURE 8. Rule Replication Factor in HyperCuts

	5.4 Sensitivity Study
	5.4.1 Isolating Separability and Equi-dense Cuts
	FIGURE 9. Impact of Separability & Equi-dense Cuts

	5.4.2 Isolating Selective Tree Merging & Co-location
	FIGURE 10. Impact of Tree Merging & Co-location

	6 Related Work
	7 Conclusion
	AcknowledgMENTs
	References
	[1] F.�Baboescu, S.�Singh, and G.�Varghese. Packet Classification for Core Routers: Is there an a...
	[2] F.�Baboescu and G.�Varghese. Scalable Packet Classification. In Proceedings of the ACM SIGCOM...
	[3] E.�Cohen and C.�Lund. Packet Classification in Large ISPs: Design and Evaluation of Decision ...
	[4] A.�Feldman and S.�Muthukrishnan. Tradeoffs for Packet Classification. In Proceedings of the 1...
	[5] P.�Gupta and N.�McKeown. Packet Classification on Multiple Fields. In Proceedings of the SIGC...
	[6] P.�Gupta and N.�McKeown. Classifying Packets with Hierarchical Intelligent Cuttings. IEEE Mic...
	[7] J.�Hasan, S.�Cadambi, V.�Jakkula, and S.�Chakradhar. Chisel: A Storage-efficient, Collision-f...
	[8] T.�V. Lakshman and D.�Stiliadis. High-speed Policy-based Packet Forwarding using Efficient Mu...
	[9] K.�Lakshminarayanan, A.�Rangarajan, and S.�Venkatachary. Algorithms for Advanced Packet Class...
	[10] N.�Muralimanohar, R.�Balasubramonian, and N.�P. Jouppi. CACTI 6.0: A Tool to Model Large Cac...
	[11] Y.�Qi, L.�Xu, B.�Yang, Y.�Xue, and J.�Li. Packet Classification Algorithms: From Theory to P...
	[12] S.�Singh, F.�Baboescu, G.�Varghese, and J.�Wang. Packet Classification using Multidimensiona...
	[13] E.�Spitznagel, D.�Taylor, and J.�Turner. Packet classification using extended TCAMs. In Proc...
	[14] V.�Srinivasan, S.�Suri, and G.�Varghese. Packet classification using tuple space search. In ...
	[15] D.�Taylor and J.�Turner. Scalable packet classification using distributed crossproducing of ...
	[16] D.�E. Taylor and J.�S. Turner. Classbench: A Packet Classification Benchmark. IEEE/ACM Trans...
	[17] T.�Woo. A Modular Approach to Packet Classification: Algorithms and Results. In Proceedings ...

